
S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

Chapter B7. Random Numbers
One might think that good random number generators, including those in

Volume 1, should last forever. The world of computing changes very rapidly,
however:

• When Volume 1 was published, it was unusual, except on the fastest
supercomputers, to “exhaust” a 32-bit random number generator, that is,
to call for all232 sequential random values in its periodic sequence. Now,
this is feasible, and not uncommon, on fast desktop workstations. A
useful generator today must have a minimum of 64 bits of state space,
and generally somewhat more.

• Before Fortran 90, the Fortran language had no standardized calling
sequence for random numbers. Now, although there is still no standard
algorithm defined by the language (rightly, we think), there is at least a
standard calling sequence, exemplified in the intrinsicsrandom number
and random seed.

• The rise of parallel computing places new algorithmic demands on ran-
dom generators. The classic algorithms, which compute each random
value from the previous one, evidently need generalization to a parallel
environment.

• New algorithms and techniques have been discovered, in some cases
significantly faster than their predecessors.

These are the reasons that we have decided to implement, in Fortran 90,
different uniform random number generators from those in Volume 1’s Fortran
77 implementations. We hasten to add that there is nothing wrong with any of
the generators in Volume 1. That volume’sran0 and ran1 routines are, to our
knowledge, completely adequate as 32-bit generators;ran2 has a 64-bit state space,
and our previous offer of$1000 forany demonstrated failure in the algorithm has
never yet been claimed (see[1]).

Before we launch into the discussion of parallelizable generators with Fortran
90 calling conventions, we want to attend to the continuing needs of longtime
“x=ran(idum)” users with purely serial machines. If you are a satisfied user of
Volume 1’sran0, ran1, or ran2 Fortran 77 versions, you are in this group. The
following routine,ran, preserves those routines’ calling conventions, is considerably
faster thanran2, and does not suffer from the oldran0 or ran1’s 32-bit period
exhaustion limitation. It is completely portable to all Fortran 90 environments. We
recommendran as the plug-compatible replacement for the oldran0, ran1, and
ran2, and we happily offer exactly the same$1000 reward terms as were (and are
still) offered on the oldran2.

1141

1142 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

FUNCTION ran(idum)
IMPLICIT NONE
INTEGER, PARAMETER :: K4B=selected_int_kind(9)
INTEGER(K4B), INTENT(INOUT) :: idum
REAL :: ran

“Minimal” random number generator of Park and Miller combined with a Marsaglia shift
sequence. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint
values). This fully portable, scalar generator has the “traditional” (not Fortran 90) calling
sequence with a random deviate as the returned function value: call with idum a negative
integer to initialize; thereafter, do not alter idum except to reinitialize. The period of this
generator is about 3.1 × 1018.

INTEGER(K4B), PARAMETER :: IA=16807,IM=2147483647,IQ=127773,IR=2836
REAL, SAVE :: am
INTEGER(K4B), SAVE :: ix=-1,iy=-1,k
if (idum <= 0 .or. iy < 0) then Initialize.

am=nearest(1.0,-1.0)/IM
iy=ior(ieor(888889999,abs(idum)),1)
ix=ieor(777755555,abs(idum))
idum=abs(idum)+1 Set idum positive.

end if
ix=ieor(ix,ishft(ix,13)) Marsaglia shift sequence with period 232 − 1.
ix=ieor(ix,ishft(ix,-17))
ix=ieor(ix,ishft(ix,5))
k=iy/IQ Park-Miller sequence by Schrage’s method,

period 231 − 2.iy=IA*(iy-k*IQ)-IR*k
if (iy < 0) iy=iy+IM
ran=am*ior(iand(IM,ieor(ix,iy)),1) Combine the two generators with masking to

ensure nonzero value.END FUNCTION ran

This is a good place to discuss a new bit of algorithmics that has crept intoran,
above, and even more strongly affects all of our new random number generators,
below. Consider:

ix=ieor(ix,ishft(ix,13))
ix=ieor(ix,ishft(ix,-17))
ix=ieor(ix,ishft(ix,5))

These lines update a 32-bit integerix, which cycles pseudo-randomly through a full
period of232 − 1 values (excluding zero) before repeating. Generators of this type
have been extensively explored by Marsaglia (see[2]), who has kindly communicated
some additional results to us in advance of publication. For convenience, we will
refer to generators of this sort as “Marsaglia shift registers.”

Useful properties of Marsaglia shift registers are (i) they are very fast on most
machines, since they use only fast logical operations, and (ii) the bit-mixing that they
induce is quite different in character from that induced by arithmetic operations such
as are used in linear congruential generators (see Volume 1) or lagged Fibonacci
generators (see below). Thus, the combination of a Marsaglia shift register with
another, algorithmically quite different generator is a powerful way to suppress any
residual correlations or other weaknesses in the other generator. Indeed, Marsaglia
finds (and we concur) that the above generator (with constants13,−17, 5, as shown)
is by itself about as good as any 32-bit random generator.

Here is a very brief outline of the theory behind these generators: Consider the
32 bits of the integer as components in a vector of length 32, in a linear space where
addition and multiplication are done modulo 2. Noting that exclusive-or (ieor) is
the same as addition, each of the three lines in the updating can be written as the
action of a32×32 matrix on a vector, where the matrix is all zeros except for ones on

Chapter B7. Random Numbers 1143

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

the diagonal, and on exactly one super- or subdiagonal (corresponding to positive or
negative second arguments inishft). Denote this matrix asSk, wherek is the shift
argument. Then, one full step of updating (three lines of code, above) corresponds
to multiplication by the matrixT ≡ Sk3Sk2Sk1 .

One next needs to find triples of integers(k1, k2, k3), for example(13,−17, 5),
that give the fullM ≡ 232 − 1 period. Necessary and sufficient conditions are
that TM = 1 (the identity matrix), and thatTN �= 1 for these five values ofN :
N = 3 × 5 × 17 × 257, N = 3 × 5 × 17 × 65537, N = 3 × 5 × 257 × 65537,
N = 3× 17× 257× 65537, N = 5× 17× 257× 65537. (Note that each of the five
prime factors ofM is omitted one at a time to get the five values ofN .) The required
large powers ofT are readily computed by successive squarings, requiring only on
the order of323 log M operations. With this machinery, one can find full-period
triples (k1, k2, k3) by exhaustive search, at reasonable cost.

Not all such triples are equally good as generators of random integers, however.
Marsaglia subjects candidate values to a battery of tests for randomness, and we
have ourselves applied various tests. This stage of winnowing is as much art as
science, because all 32-bit generators can be made to exhibit signs of failure due to
period exhaustion (if for no other reason). “Good” triples, in order of our preference,
are(13,−17, 5), (5,−13, 6), (5,−9, 7), (13,−17, 15), (16,−7, 11). When a full-
period triple is good, its reverse is also full-period, and also generally good. A
good quadruple due to Marsaglia (generalizing the above in the obvious way) is
(−4, 8,−1, 5). We would not recommend relying on any single Marsaglia shift
generator (nor on any other simple generator)by itself. Two or more generators, of
quite different types, should be combined[1].

� � �

Let us now discuss explicitly the needs ofparallel random number gener-
ators. The general scheme, from the user’s perspective, is that of Fortran
90’s intrinsicrandom number: A statement likecall ran1(harvest)

(whereran1 will be one of our portable replacements for the compiler-dependent
random number) should fill the real arrayharvestwith pseudo-random real values
in the range(0, 1). Of course, we want the underlying machinery to be completely
parallel, that is, no do-loops of orderN ≡ size(harvest).

A first design decision is whether to replicate the state-space across the parallel
dimensionN , i.e., whether to reserve storage for essentiallyN scalar generators.
Although there are various schemes that avoid doing this (e.g., mapping a single,
smaller, state space intoN different output values on each call), we think that it is a
memory cost well worth paying in return for achieving a less exotic (and thus better
tested) algorithm. However, this choice dictates that we must keep the state space
per component quite small. We have settled on five or fewer 32-bit words of state
space per component as a reasonable limit. Some otherwise interesting and well
tested methods (such as Knuth’s subtractive generator, implemented in Volume 1 as
ran3) are ruled out by this constraint.

A second design decision is how to initialize the parallel state space, so that
different parallel components produce different sequences, and so that there is an
acceptable degree of randomnessacross the parallel dimension, as well asbetween
successive calls of the generator. Each component starts its life with one and
only one unique identifier, its component indexn in the range1 . . .N . One is

1144 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

tempted simply to hash the valuesn into the corresponding components of initial
state space. “Random” hashing is a bad idea, however, because differentn’s will
produce identical 32-bit hash results by chance whenN is no larger than∼ 2 16. We
therefore prefer to use a kind of reversible pseudo-encryption (similar to the routine
psdes in Volume 1 and below) which guarantees causally that differentn’s produce
different state space initializations.

f90
The machinery for allocating, deallocating, and initializing the state
space, including provision of a user interface for getting or putting the
contents of the state space (as in the intrinsicrandom seed) is fairly

complicated. Rather than duplicate it in each different random generator that we
provide, we have consolidated it in a single module,ran state, whose contents
we will now discuss. Such a discussion is necessarily technical, if not arcane; on
first reading, you may wish to skip ahead to the actual new routinesran0, ran1,
andran2. If you do so, you will need to know only thatran state provides each
vector random routine with five 32-bit vectors of state information, denotediran,
jran, kran, mran, nran. (The overloaded scalar generators have five corresponding
32-bit scalars, denotediran0, etc.)

MODULE ran_state
This module supports the random number routines ran0, ran1, ran2, and ran3. It pro-
vides each generator with five integers (for vector versions, five vectors of integers), for
use as internal state space. The first three integers (iran, jran, kran) are maintained
as nonnegative values, while the last two (mran, nran) have 32-bit nonzero values. Also
provided by this module is support for initializing or reinitializing the state space to a desired
standard sequence number, hashing the initial values to random values, and allocating and
deallocating the internal workspace.

USE nrtype
IMPLICIT NONE
INTEGER, PARAMETER :: K4B=selected_int_kind(9)
Independent of the usual integer kind I4B, we need a kind value for (ideally) 32-bit integers.

INTEGER(K4B), PARAMETER :: hg=huge(1_K4B), hgm=-hg, hgng=hgm-1
INTEGER(K4B), SAVE :: lenran=0, seq=0
INTEGER(K4B), SAVE :: iran0,jran0,kran0,nran0,mran0,rans
INTEGER(K4B), DIMENSION(:,:), POINTER, SAVE :: ranseeds
INTEGER(K4B), DIMENSION(:), POINTER, SAVE :: iran,jran,kran, &

nran,mran,ranv
REAL(SP), SAVE :: amm
INTERFACE ran_hash Scalar and vector versions of the hashing procedure.

MODULE PROCEDURE ran_hash_s, ran_hash_v
END INTERFACE
CONTAINS

(We here intersperse discussion with the listing of the module.) The module
definesK4B as an integerKIND that is intended to be 32 bits. If your machine doesn’t
have 32-bit integers (hard to believe!) this will be caught later, and an error message
generated. The definition of the parametershg, hgm, andhgng makes an assumption
about 32-bit integers that goes beyond the strict Fortran 90 integer model, that the
magnitude of the most negative representable integer is greater by one than that of
the most positive representable integer. This is a property of thetwo’s complement
arithmetic that is used on virtually all modern machines (see, e.g.,[3]).

The global variablesrans (for scalar) andranv (for vector) are used by all
of our routines to store theinteger value associated with the most recently returned
call. You can access these (with a “USE ran state” statement) if you want integer,
rather than real, random deviates.

Chapter B7. Random Numbers 1145

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

The first routine,ran init, is called by routines later in the chapter to initialize
their state space. It isnot intended to be called from a user’s program.

SUBROUTINE ran_init(length)
USE nrtype; USE nrutil, ONLY : arth,nrerror,reallocate
IMPLICIT NONE
INTEGER(K4B), INTENT(IN) :: length

Initialize or reinitialize the random generator state space to vectors of size length. The
saved variable seq is hashed (via calls to the module routine ran hash) to create unique
starting seeds, different for each vector component.

INTEGER(K4B) :: new,j,hgt
if (length < lenran) RETURN Simply return if enough space is already al-

located.hgt=hg
The following lines check that kind value K4B is in fact a 32-bit integer with the usual properties
that we expect it to have (under negation and wrap-around addition). If all of these tests are
satisfied, then the routines that use this module are portable, even though they go beyond
Fortran 90’s integer model.

if (hg /= 2147483647) call nrerror(’ran_init: arith assump 1 fails’)
if (hgng >= 0) call nrerror(’ran_init: arith assump 2 fails’)
if (hgt+1 /= hgng) call nrerror(’ran_init: arith assump 3 fails’)
if (not(hg) >= 0) call nrerror(’ran_init: arith assump 4 fails’)
if (not(hgng) < 0) call nrerror(’ran_init: arith assump 5 fails’)
if (hg+hgng >= 0) call nrerror(’ran_init: arith assump 6 fails’)
if (not(-1_k4b) < 0) call nrerror(’ran_init: arith assump 7 fails’)
if (not(0_k4b) >= 0) call nrerror(’ran_init: arith assump 8 fails’)
if (not(1_k4b) >= 0) call nrerror(’ran_init: arith assump 9 fails’)
if (lenran > 0) then Reallocate space, or ...

ranseeds=>reallocate(ranseeds,length,5)
ranv=>reallocate(ranv,length-1)
new=lenran+1

else allocate space.
allocate(ranseeds(length,5))
allocate(ranv(length-1))
new=1 Index of first location not yet initialized.
amm=nearest(1.0_sp,-1.0_sp)/hgng
Use of nearest is to ensure that returned random deviates are strictly less than 1.0.

if (amm*hgng >= 1.0 .or. amm*hgng <= 0.0) &
call nrerror(’ran_init: arth assump 10 fails’)

end if
Set starting values, unique by seq and vector component.

ranseeds(new:,1)=seq
ranseeds(new:,2:5)=spread(arth(new,1,size(ranseeds(new:,1))),2,4)
do j=1,4 Hash them.

call ran_hash(ranseeds(new:,j),ranseeds(new:,j+1))
end do
where (ranseeds(new:,1:3) < 0) & Enforce nonnegativity.

ranseeds(new:,1:3)=not(ranseeds(new:,1:3))
where (ranseeds(new:,4:5) == 0) ranseeds(new:,4:5)=1 Enforce nonzero.
if (new == 1) then Set scalar seeds.

iran0=ranseeds(1,1)
jran0=ranseeds(1,2)
kran0=ranseeds(1,3)
mran0=ranseeds(1,4)
nran0=ranseeds(1,5)
rans=nran0

end if
if (length > 1) then Point to vector seeds.

iran => ranseeds(2:,1)
jran => ranseeds(2:,2)
kran => ranseeds(2:,3)
mran => ranseeds(2:,4)
nran => ranseeds(2:,5)
ranv = nran

1146 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

end if
lenran=length
END SUBROUTINE ran_init

f90
hgt=hg ... if (hgt+1 /= hgng) Bit of dirty laundry here! We are testing
whether the most positive integerhg wraps around to the most negative
integerhgng when 1 is added to it. We can’t just writehg+1, since some

compilers will evaluate this at compile time and return an overflow error message.
If your compiler sees through the charade of the temporary variablehgt, you’ll
have to find another way to trick it.

amm=nearest(1.0_sp,-1.0_sp)/hgng... Logically, amm should be a parameter;
but the nearest intrinsic is trouble-prone in the initialization expression for a
parameter (named constant), so we compute this at run time. We then check thatamm,
when multiplied by the largest possible negative integer, does not equal or exceed
unity. (Our random deviates are guaranteed never to equal zero or unity exactly.)

You might wonder whyamm is negative, and why we multiply it by negative
integers to get positive random deviates. The answer, which will become manifest
in the random generators given below, is that we want to use the fastnot operation
on integers to convert them to nonzero values of all one sign. This is possible if the
conversion is to negative values, sincenot(i) is negative for all nonnegativei. If
the conversion were to positive values, we would have problems both with zero (its
sign bit is already positive) andhgng (sincenot(hgng) is generally zero).

iran0=ranseeds(1,1) ...
iran => ranseeds(2:,1)...

The initial state information is stored inranseeds, a two-dimensional array whose
column (second) index ranges from 1 to 5 over the state variables.ranseeds(1,:) is
reserved for scalar random generators, whileranseeds(2:,:) is for vector-parallel
generators. Theranseeds array is made available to vector generators through
the pointersiran, jran, kran, mran, andnran. The corresponding scalar values,
iran0,. . ., nran0 are simply global variables, not pointers, because the overhead of
addressing a scalar through a pointer is often too great. (We will have to copy these
scalar values back intoranseedswhen it, rarely, needs to be addressed as an array.)

call ran_hash(...) Unique, and random, initial state information is obtained
by putting a user-settable “sequence number” intoiran, a component number into
jran, and hashing this pair. Thenjran and kran are hashed,kran and mran
are hashed, and so forth.

SUBROUTINE ran_deallocate
User interface to release the workspace used by the random number routines.

if (lenran > 0) then
deallocate(ranseeds,ranv)
nullify(ranseeds,ranv,iran,jran,kran,mran,nran)
lenran = 0

end if
END SUBROUTINE ran_deallocate

The above routine is supplied as a user interface for deallocating all the state
space storage.

Chapter B7. Random Numbers 1147

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

SUBROUTINE ran_seed(sequence,size,put,get)
IMPLICIT NONE
INTEGER, OPTIONAL, INTENT(IN) :: sequence
INTEGER, OPTIONAL, INTENT(OUT) :: size
INTEGER, DIMENSION(:), OPTIONAL, INTENT(IN) :: put
INTEGER, DIMENSION(:), OPTIONAL, INTENT(OUT) :: get

User interface for seeding the random number routines. Syntax is exactly like Fortran 90’s
random seed routine, with one additional argument keyword: sequence, set to any inte-
ger value, causes an immediate new initialization, seeded by that integer.

if (present(size)) then
size=5*lenran

else if (present(put)) then
if (lenran == 0) RETURN
ranseeds=reshape(put,shape(ranseeds))
where (ranseeds(:,1:3) < 0) ranseeds(:,1:3)=not(ranseeds(:,1:3))
Enforce nonnegativity and nonzero conditions on any user-supplied seeds.

where (ranseeds(:,4:5) == 0) ranseeds(:,4:5)=1
iran0=ranseeds(1,1)
jran0=ranseeds(1,2)
kran0=ranseeds(1,3)
mran0=ranseeds(1,4)
nran0=ranseeds(1,5)

else if (present(get)) then
if (lenran == 0) RETURN
ranseeds(1,1:5)=(/ iran0,jran0,kran0,mran0,nran0 /)
get=reshape(ranseeds,shape(get))

else if (present(sequence)) then
call ran_deallocate
seq=sequence

end if
END SUBROUTINE ran_seed

f90 ranseeds=reshape(put,shape(ranseeds)) ...
get=reshape(ranseeds,shape(get))

Fortran 90’s convention is that random state space is a one-dimensional array, so we
map to this on both theget andput keywords.

iran0=...jran0=...kran0=...
ranseeds(1,1:5)=(/ iran0,jran0,kran0,mran0,nran0 /)

It’s much more convenient to set a vector from a bunch of scalars then the other
way around.

SUBROUTINE ran_hash_s(il,ir)
IMPLICIT NONE
INTEGER(K4B), INTENT(INOUT) :: il,ir

DES-like hashing of two 32-bit integers, using shifts, xor’s, and adds to make the internal
nonlinear function.

INTEGER(K4B) :: is,j
do j=1,4

is=ir
ir=ieor(ir,ishft(ir,5))+1422217823 The various constants are chosen to give

good bit mixing and should not be
changed.

ir=ieor(ir,ishft(ir,-16))+1842055030
ir=ieor(ir,ishft(ir,9))+80567781
ir=ieor(il,ir)
il=is

end do
END SUBROUTINE ran_hash_s

1148 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

SUBROUTINE ran_hash_v(il,ir)
IMPLICIT NONE
INTEGER(K4B), DIMENSION(:), INTENT(INOUT) :: il,ir

Vector version of ran hash s.
INTEGER(K4B), DIMENSION(size(il)) :: is
INTEGER(K4B) :: j
do j=1,4

is=ir
ir=ieor(ir,ishft(ir,5))+1422217823
ir=ieor(ir,ishft(ir,-16))+1842055030
ir=ieor(ir,ishft(ir,9))+80567781
ir=ieor(il,ir)
il=is

end do
END SUBROUTINE ran_hash_v

END MODULE ran_state

The lines

ir=ieor(ir,ishft(ir,5))+1422217823
ir=ieor(ir,ishft(ir,-16))+1842055030
ir=ieor(ir,ishft(ir,9))+80567781

are not a Marsaglia shift sequence, though they resemble one. Instead, they
implement a fast, nonlinear function onir that we use as the “S-box” in a DES-like
hashing algorithm. (See Volume 1,§7.5.) The triplet(5,−16, 9) is not chosen to
give a full period Marsaglia sequence — it doesn’t. Instead it is chosen as being
particularly good at separating in Hamming distance (i.e., number of nonidentical
bits) two initially close values ofir (e.g., differing by only one bit). The large
integer constants are chosen by a similar criterion. Note that the wrap-around
of addition without generating an overflow error condition, which was tested in
ran init, is relied upon here.

� � �

SUBROUTINE ran0_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,iran0,jran0,kran0,nran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Lagged Fibonacci generator combined with a Marsaglia shift sequence. Returns as harvest
a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint values). This gen-
erator has the same calling and initialization conventions as Fortran 90’s random number
routine. Use ran seed to initialize or reinitialize to a particular sequence. The period of
this generator is about 2.0 × 1028, and it fully vectorizes. Validity of the integer model
assumed by this generator is tested at initialization.

if (lenran < 1) call ran_init(1) Initialization routine in ran state.
rans=iran0-kran0 Update Fibonacci generator, which

has period p2 +p+1, p = 231−
69.

if (rans < 0) rans=rans+2147483579_k4b
iran0=jran0
jran0=kran0
kran0=rans
nran0=ieor(nran0,ishft(nran0,13)) Update Marsaglia shift sequence with

period 232 − 1.nran0=ieor(nran0,ishft(nran0,-17))
nran0=ieor(nran0,ishft(nran0,5))
rans=ieor(nran0,rans) Combine the generators.
harvest=amm*merge(rans,not(rans), rans<0) Make the result positive definite (note

that amm is negative).END SUBROUTINE ran0_s

Chapter B7. Random Numbers 1149

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

SUBROUTINE ran0_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,iran,jran,kran,nran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n)=iran(1:n)-kran(1:n)
where (ranv(1:n) < 0) ranv(1:n)=ranv(1:n)+2147483579_k4b
iran(1:n)=jran(1:n)
jran(1:n)=kran(1:n)
kran(1:n)=ranv(1:n)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
ranv(1:n)=ieor(nran(1:n),ranv(1:n))
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0)
END SUBROUTINE ran0_v

This is the simplest, and fastest, of the generators provided. It combines a
subtractive Fibonacci generator (Number 6 in ref.[1], and one of the generators
in Marsaglia and Zaman’smzran) with a Marsaglia shift sequence. On typical
machines it is only 20% or so faster thanran1, however; so we recommend the
latter preferentially. While we know of no weakness inran0, we are not offering
a prize for finding a weakness.ran0 does have the feature, useful if you have
a machine with nonstandard arithmetic, that it does not go beyond Fortran 90’s
assumed integer model.

Note thatran0 s andran0 v are overloaded by the modulenr onto the single
nameran0 (and similarly for the routines below).

� � �

SUBROUTINE ran1_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &

iran0,jran0,kran0,nran0,mran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Lagged Fibonacci generator combined with two Marsaglia shift sequences. On output, re-
turns as harvest a uniform random deviate between 0.0 and 1.0 (exclusive of the endpoint
values). This generator has the same calling and initialization conventions as Fortran 90’s
random number routine. Use ran seed to initialize or reinitialize to a particular sequence.
The period of this generator is about 8.5×1037, and it fully vectorizes. Validity of the integer
model assumed by this generator is tested at initialization.

if (lenran < 1) call ran_init(1) Initialization routine in ran state.
rans=iran0-kran0 Update Fibonacci generator, which

has period p2 +p+1, p = 231−
69.

if (rans < 0) rans=rans+2147483579_k4b
iran0=jran0
jran0=kran0
kran0=rans
nran0=ieor(nran0,ishft(nran0,13)) Update Marsaglia shift sequence.
nran0=ieor(nran0,ishft(nran0,-17))
nran0=ieor(nran0,ishft(nran0,5))
Once only per cycle, advance sequence by 1, shortening its period to 232 − 2.

if (nran0 == 1) nran0=270369_k4b
mran0=ieor(mran0,ishft(mran0,5)) Update Marsaglia shift sequence with

period 232 − 1.mran0=ieor(mran0,ishft(mran0,-13))
mran0=ieor(mran0,ishft(mran0,6))

1150 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

rans=ieor(nran0,rans)+mran0
Combine the generators. The above statement has wrap-around addition.

harvest=amm*merge(rans,not(rans), rans<0) Make the result positive definite (note
that amm is negative).END SUBROUTINE ran1_s

SUBROUTINE ran1_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &

iran,jran,kran,nran,mran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n)=iran(1:n)-kran(1:n)
where (ranv(1:n) < 0) ranv(1:n)=ranv(1:n)+2147483579_k4b
iran(1:n)=jran(1:n)
jran(1:n)=kran(1:n)
kran(1:n)=ranv(1:n)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
where (nran(1:n) == 1) nran(1:n)=270369_k4b
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),5))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),-13))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),6))
ranv(1:n)=ieor(nran(1:n),ranv(1:n))+mran(1:n)
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0)
END SUBROUTINE ran1_v

The routineran1 combinesthree fast generators: the two used inran0, plus
an additional (different) Marsaglia shift sequence. The last generator is combined
via an addition that can wrap-around.

We think that, within the limits of its floating-point precision,ran1 provides
perfect random numbers. We will pay$1000 to the first reader who convinces us
otherwise (by exhibiting a statistical test thatran1 fails in a nontrivial way, excluding
the ordinary limitations of a floating-point representation).

� � �

SUBROUTINE ran2_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &

iran0,jran0,kran0,nran0,mran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Lagged Fibonacci generator combined with a Marsaglia shift sequence and a linear con-
gruential generator. Returns as harvest a uniform random deviate between 0.0 and 1.0
(exclusive of the endpoint values). This generator has the same calling and initialization
conventions as Fortran 90’s random number routine. Use ran seed to initialize or reini-
tialize to a particular sequence. The period of this generator is about 8.5×1037, and it fully
vectorizes. Validity of the integer model assumed by this generator is tested at initialization.

if (lenran < 1) call ran_init(1) Initialization routine in ran state.
rans=iran0-kran0 Update Fibonacci generator, which

has period p2 +p+1, p = 231−
69.

if (rans < 0) rans=rans+2147483579_k4b
iran0=jran0
jran0=kran0
kran0=rans

Chapter B7. Random Numbers 1151

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

nran0=ieor(nran0,ishft(nran0,13)) Update Marsaglia shift sequence with
period 232 − 1.nran0=ieor(nran0,ishft(nran0,-17))

nran0=ieor(nran0,ishft(nran0,5))
rans=iand(mran0,65535)
Update the sequence m← 69069m + 820265819 mod 232 using shifts instead of multiplies.
Wrap-around addition (tested at initialization) is used.

mran0=ishft(3533*ishft(mran0,-16)+rans,16)+ &
3533*rans+820265819_k4b

rans=ieor(nran0,kran0)+mran0 Combine the generators.
harvest=amm*merge(rans,not(rans), rans<0) Make the result positive definite (note

that amm is negative).END SUBROUTINE ran2_s

SUBROUTINE ran2_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init, &

iran,jran,kran,nran,mran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
ranv(1:n)=iran(1:n)-kran(1:n)
where (ranv(1:n) < 0) ranv(1:n)=ranv(1:n)+2147483579_k4b
iran(1:n)=jran(1:n)
jran(1:n)=kran(1:n)
kran(1:n)=ranv(1:n)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
ranv(1:n)=iand(mran(1:n),65535)
mran(1:n)=ishft(3533*ishft(mran(1:n),-16)+ranv(1:n),16)+ &

3533*ranv(1:n)+820265819_k4b
ranv(1:n)=ieor(nran(1:n),kran(1:n))+mran(1:n)
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0)
END SUBROUTINE ran2_v

ran2, for use by readers whose caution is extreme, also combines three
generators. The difference fromran1 is that each generator is based on a completely
different method from the other two. The third generator, in this case, is a linear
congruential generator, modulo232. This generator relies extensively on wrap-
around addition (which is automatically tested at initialization). On machines with
fast arithmetic,ran2 is on the order of only 20% slower thanran1. We offer a
$1000 bounty onran2, with the same terms as forran1, above.

� � �

SUBROUTINE expdev_s(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Returns in harvest an exponentially distributed, positive, random deviate of unit mean,
using ran1 as the source of uniform deviates.

REAL(SP) :: dum
call ran1(dum)
harvest=-log(dum) We use the fact that ran1 never returns exactly 0 or 1.
END SUBROUTINE expdev_s

1152 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

SUBROUTINE expdev_v(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
REAL(SP), DIMENSION(size(harvest)) :: dum
call ran1(dum)
harvest=-log(dum)
END SUBROUTINE expdev_v

f90
call ran1(dum) The only noteworthy thing about this line is its simplic-
ity: Once all the machinery is in place, the random number generators
are self-initializing (to the sequence defined byseq = 0), and (via

overloading) usable with both scalar and vector arguments.

� � �

SUBROUTINE gasdev_s(harvest)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Returns in harvest a normally distributed deviate with zero mean and unit variance, using
ran1 as the source of uniform deviates.

REAL(SP) :: rsq,v1,v2
REAL(SP), SAVE :: g
LOGICAL, SAVE :: gaus_stored=.false.
if (gaus_stored) then We have an extra deviate handy,

harvest=g so return it,
gaus_stored=.false. and unset the flag.

else We don’t have an extra deviate handy, so
do

call ran1(v1) pick two uniform numbers in the square ex-
tending from -1 to +1 in each direction,call ran1(v2)

v1=2.0_sp*v1-1.0_sp
v2=2.0_sp*v2-1.0_sp
rsq=v1**2+v2**2 see if they are in the unit circle,
if (rsq > 0.0 .and. rsq < 1.0) exit

end do otherwise try again.
rsq=sqrt(-2.0_sp*log(rsq)/rsq) Now make the Box-Muller transformation to

get two normal deviates. Return one and
save the other for next time.

harvest=v1*rsq
g=v2*rsq
gaus_stored=.true. Set flag.

end if
END SUBROUTINE gasdev_s

SUBROUTINE gasdev_v(harvest)
USE nrtype; USE nrutil, ONLY : array_copy
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
REAL(SP), DIMENSION(size(harvest)) :: rsq,v1,v2
REAL(SP), ALLOCATABLE, DIMENSION(:), SAVE :: g
INTEGER(I4B) :: n,ng,nn,m
INTEGER(I4B), SAVE :: last_allocated=0
LOGICAL, SAVE :: gaus_stored=.false.
LOGICAL, DIMENSION(size(harvest)) :: mask
n=size(harvest)
if (n /= last_allocated) then

Chapter B7. Random Numbers 1153

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

if (last_allocated /= 0) deallocate(g)
allocate(g(n))
last_allocated=n
gaus_stored=.false.

end if
if (gaus_stored) then

harvest=g
gaus_stored=.false.

else
ng=1
do

if (ng > n) exit
call ran1(v1(ng:n))
call ran1(v2(ng:n))
v1(ng:n)=2.0_sp*v1(ng:n)-1.0_sp
v2(ng:n)=2.0_sp*v2(ng:n)-1.0_sp
rsq(ng:n)=v1(ng:n)**2+v2(ng:n)**2
mask(ng:n)=(rsq(ng:n)>0.0 .and. rsq(ng:n)<1.0)
call array_copy(pack(v1(ng:n),mask(ng:n)),v1(ng:),nn,m)
v2(ng:ng+nn-1)=pack(v2(ng:n),mask(ng:n))
rsq(ng:ng+nn-1)=pack(rsq(ng:n),mask(ng:n))
ng=ng+nn

end do
rsq=sqrt(-2.0_sp*log(rsq)/rsq)
harvest=v1*rsq
g=v2*rsq
gaus_stored=.true.

end if
END SUBROUTINE gasdev_v

if (n /= last_allocated) ... We make the assumption that, in most
cases, the size ofharvest will not change between successive calls.
Therefore, if itdoes change, we don’t try to save the previously generated

deviates that, half the time, will be around. If your use has rapidly varying sizes
(or, even worse, calls alternating between two different sizes), you should remedy
this inefficiency in the obvious way.

call array_copy(pack(v1(ng:n),mask(ng:n)),v1(ng:),nn,m) This is a variant
of the pack-unpack method (see note tofactrl, p. 1087). Different here is that we
don’t care which random deviates end up in which component. Thus, we can simply
keep packing successful returns intov1 andv2 until they are full.

f90
Note also the use ofarray copy, since we don’t know in advance the
length of the array returned bypack.

� � �

FUNCTION gamdev(ia)
USE nrtype; USE nrutil, ONLY : assert
USE nr, ONLY : ran1
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: ia
REAL(SP) :: gamdev

Returns a deviate distributed as a gamma distribution of integer order ia, i.e., a waiting
time to the iath event in a Poisson process of unit mean, using ran1 as the source of
uniform deviates.

REAL(SP) :: am,e,h,s,x,y,v(2),arr(5)
call assert(ia >= 1, ’gamdev arg’)
if (ia < 6) then Use direct method, adding waiting times.

1154 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

call ran1(arr(1:ia))
x=-log(product(arr(1:ia)))

else Use rejection method.
do

call ran1(v)
v(2)=2.0_sp*v(2)-1.0_sp These three lines generate the tangent of a

random angle, i.e., are equivalent to
y = tan(πran(idum)).

if (dot_product(v,v) > 1.0) cycle
y=v(2)/v(1)
am=ia-1
s=sqrt(2.0_sp*am+1.0_sp)
x=s*y+am We decide whether to reject x:
if (x <= 0.0) cycle Reject in region of zero probability.
e=(1.0_sp+y**2)*exp(am*log(x/am)-s*y) Ratio of probability function to

comparison function.call ran1(h)
if (h <= e) exit Reject on basis of a second uniform deviate.

end do
end if
gamdev=x
END FUNCTION gamdev

f90
x=-log(product(arr(1:ia))) Why take thelog of the product instead of
the sum of thelogs? Becauselog is assumed to be slower than multiply.

We don’t have vector versions of the less commonly used deviate gener-
ators,gamdev, poidev, andbnldev.

� � �

FUNCTION poidev(xm)
USE nrtype
USE nr, ONLY : gammln,ran1
IMPLICIT NONE
REAL(SP), INTENT(IN) :: xm
REAL(SP) :: poidev

Returns as a floating-point number an integer value that is a random deviate drawn from a
Poisson distribution of mean xm, using ran1 as a source of uniform random deviates.

REAL(SP) :: em,harvest,t,y
REAL(SP), SAVE :: alxm,g,oldm=-1.0_sp,sq
oldm is a flag for whether xm has changed since last call.

if (xm < 12.0) then Use direct method.
if (xm /= oldm) then

oldm=xm
g=exp(-xm) If xm is new, compute the exponential.

end if
em=-1
t=1.0
do

em=em+1.0_sp Instead of adding exponential deviates it is
equivalent to multiply uniform deviates.
We never actually have to take the log;
merely compare to the pre-computed ex-
ponential.

call ran1(harvest)
t=t*harvest
if (t <= g) exit

end do
else Use rejection method.

if (xm /= oldm) then If xm has changed since the last call, then pre-
compute some functions that occur be-
low.

oldm=xm
sq=sqrt(2.0_sp*xm)
alxm=log(xm)
g=xm*alxm-gammln(xm+1.0_sp) The function gammln is the natural log of the

gamma function, as given in §6.1.end if
do

Chapter B7. Random Numbers 1155

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

do
call ran1(harvest) y is a deviate from a Lorentzian comparison

function.y=tan(PI*harvest)
em=sq*y+xm em is y, shifted and scaled.
if (em >= 0.0) exit Reject if in regime of zero probability.

end do
em=int(em) The trick for integer-valued distributions.
t=0.9_sp*(1.0_sp+y**2)*exp(em*alxm-gammln(em+1.0_sp)-g)
The ratio of the desired distribution to the comparison function; we accept or reject
by comparing it to another uniform deviate. The factor 0.9 is chosen so that t never
exceeds 1.

call ran1(harvest)
if (harvest <= t) exit

end do
end if
poidev=em
END FUNCTION poidev

� � �

FUNCTION bnldev(pp,n)
USE nrtype
USE nr, ONLY : gammln,ran1
IMPLICIT NONE
REAL(SP), INTENT(IN) :: pp
INTEGER(I4B), INTENT(IN) :: n
REAL(SP) :: bnldev

Returns as a floating-point number an integer value that is a random deviate drawn from a
binomial distribution of n trials each of probability pp, using ran1 as a source of uniform
random deviates.

INTEGER(I4B) :: j
INTEGER(I4B), SAVE :: nold=-1
REAL(SP) :: am,em,g,h,p,sq,t,y,arr(24)
REAL(SP), SAVE :: pc,plog,pclog,en,oldg,pold=-1.0 Arguments from previous calls.
p=merge(pp,1.0_sp-pp, pp <= 0.5_sp)
The binomial distribution is invariant under changing pp to 1.-pp, if we also change the
answer to n minus itself; we’ll remember to do this below.

am=n*p This is the mean of the deviate to be produced.
if (n < 25) then Use the direct method while n is not too large.

This can require up to 25 calls to ran1.call ran1(arr(1:n))
bnldev=count(arr(1:n)<p)

else if (am < 1.0) then If fewer than one event is expected out of 25
or more trials, then the distribution is quite
accurately Poisson. Use direct Poisson method.

g=exp(-am)
t=1.0
do j=0,n

call ran1(h)
t=t*h
if (t < g) exit

end do
bnldev=merge(j,n, j <= n)

else Use the rejection method.
if (n /= nold) then If n has changed, then compute useful quanti-

ties.en=n
oldg=gammln(en+1.0_sp)
nold=n

end if
if (p /= pold) then If p has changed, then compute useful quanti-

ties.pc=1.0_sp-p
plog=log(p)
pclog=log(pc)
pold=p

1156 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

end if
sq=sqrt(2.0_sp*am*pc) The following code should by now seem familiar:

rejection method with a Lorentzian compar-
ison function.

do
call ran1(h)
y=tan(PI*h)
em=sq*y+am
if (em < 0.0 .or. em >= en+1.0_sp) cycle Reject.
em=int(em) Trick for integer-valued distribution.
t=1.2_sp*sq*(1.0_sp+y**2)*exp(oldg-gammln(em+1.0_sp)-&

gammln(en-em+1.0_sp)+em*plog+(en-em)*pclog)
call ran1(h)
if (h <= t) exit Reject. This happens about 1.5 times per devi-

ate, on average.end do
bnldev=em

end if
if (p /= pp) bnldev=n-bnldev Remember to undo the symmetry transforma-

tion.END FUNCTION bnldev

� � �

f90
The routinespsdes and psdes safe both performexactly the same
hashing as was done by the Fortran 77 routinepsdes. The difference
is that psdes makes assumptions about arithmetic that go beyond the

strict Fortran 90 model, whilepsdes safe makes no such assumptions. The
disadvantage ofpsdes safe is that it is significantly slower, performing most of its
arithmetic in double-precision reals that are then converted to integers with Fortran
90’s modulo intrinsic.

In fact the nonsafe version,psdes, works fine on almost all machines and
compilers that we have tried. There is a reason for this: Our assumed integer model
is the same as theC languageunsigned int, and virtually all modern computers
and compilers have a lot ofC hidden inside. Ifpsdes andpsdes safe produce
identical output on your system for any hundred or so different input values, you can
be quite confident about using the faster version exclusively.

At the other end of things, note that in the very unlikely case that your system
fails on theran hash routine in theran state module (you will have learned this
from error messages generated byran init), you can substitutepsdes safe for
ran hash: They are plug-compatible.

SUBROUTINE psdes_s(lword,rword)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4

“Pseudo-DES” hashing of the 64-bit word (lword,irword). Both 32-bit arguments are
returned hashed on all bits. Note that this version of the routine assumes properties of
integer arithmetic that go beyond the Fortran 90 model, though they are compatible with
unsigned integers in C.

INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z’BAA96887’,Z’1E17D32C’,Z’03BCDC3C’,Z’0F33D1B2’/
DATA C2 /Z’4B0F3B58’,Z’E874F0C3’,Z’6955C5A6’,Z’55A7CA46’/
INTEGER(I4B) :: i,ia,ib,iswap,itmph,itmpl
do i=1,NITER Perform niter iterations of DES logic, using a simpler

(noncryptographic) nonlinear function instead of DES’s.iswap=rword
ia=ieor(rword,C1(i)) The bit-rich constants C1 and (below) C2 guarantee lots

of nonlinear mixing.itmpl=iand(ia,65535)
itmph=iand(ishft(ia,-16),65535)

Chapter B7. Random Numbers 1157

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

ib=itmpl**2+not(itmph**2)
ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
rword=ieor(lword,ieor(C2(i),ia)+itmpl*itmph)
lword=iswap

end do
END SUBROUTINE psdes_s

SUBROUTINE psdes_v(lword,rword)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z’BAA96887’,Z’1E17D32C’,Z’03BCDC3C’,Z’0F33D1B2’/
DATA C2 /Z’4B0F3B58’,Z’E874F0C3’,Z’6955C5A6’,Z’55A7CA46’/
INTEGER(I4B), DIMENSION(size(lword)) :: ia,ib,iswap,itmph,itmpl
INTEGER(I4B) :: i
i=assert_eq(size(lword),size(rword),’psdes_v’)
do i=1,NITER

iswap=rword
ia=ieor(rword,C1(i))
itmpl=iand(ia,65535)
itmph=iand(ishft(ia,-16),65535)
ib=itmpl**2+not(itmph**2)
ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
rword=ieor(lword,ieor(C2(i),ia)+itmpl*itmph)
lword=iswap

end do
END SUBROUTINE psdes_v

SUBROUTINE psdes_safe_s(lword,rword)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4

“Pseudo-DES” hashing of the 64-bit word (lword,irword). Both 32-bit arguments are
returned hashed on all bits. This is a slower version of the routine that makes no assumptions
outside of the Fortran 90 integer model.

INTEGER(I4B), DIMENSION(4), SAVE :: C1,C2
DATA C1 /Z’BAA96887’,Z’1E17D32C’,Z’03BCDC3C’,Z’0F33D1B2’/
DATA C2 /Z’4B0F3B58’,Z’E874F0C3’,Z’6955C5A6’,Z’55A7CA46’/
INTEGER(I4B) :: i,ia,ib,iswap
REAL(DP) :: alo,ahi
do i=1,NITER

iswap=rword
ia=ieor(rword,C1(i))
alo=real(iand(ia,65535),dp)
ahi=real(iand(ishft(ia,-16),65535),dp)
ib=modint(alo*alo+real(not(modint(ahi*ahi)),dp))
ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
rword=ieor(lword,modint(real(ieor(C2(i),ia),dp)+alo*ahi))
lword=iswap

end do
CONTAINS

FUNCTION modint(x)
REAL(DP), INTENT(IN) :: x
INTEGER(I4B) :: modint
REAL(DP) :: a
REAL(DP), PARAMETER :: big=huge(modint), base=big+big+2.0_dp
a=modulo(x,base)

1158 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

if (a > big) a=a-base
modint=nint(a,kind=i4b)
END FUNCTION modint
END SUBROUTINE psdes_safe_s

SUBROUTINE psdes_safe_v(lword,rword)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTEGER(I4B), DIMENSION(:), INTENT(INOUT) :: lword,rword
INTEGER(I4B), PARAMETER :: NITER=4
INTEGER(I4B), SAVE :: C1(4),C2(4)
DATA C1 /Z’BAA96887’,Z’1E17D32C’,Z’03BCDC3C’,Z’0F33D1B2’/
DATA C2 /Z’4B0F3B58’,Z’E874F0C3’,Z’6955C5A6’,Z’55A7CA46’/
INTEGER(I4B), DIMENSION(size(lword)) :: ia,ib,iswap
REAL(DP), DIMENSION(size(lword)) :: alo,ahi
INTEGER(I4B) :: i
i=assert_eq(size(lword),size(rword),’psdes_safe_v’)
do i=1,NITER

iswap=rword
ia=ieor(rword,C1(i))
alo=real(iand(ia,65535),dp)
ahi=real(iand(ishft(ia,-16),65535),dp)
ib=modint(alo*alo+real(not(modint(ahi*ahi)),dp))
ia=ior(ishft(ib,16),iand(ishft(ib,-16),65535))
rword=ieor(lword,modint(real(ieor(C2(i),ia),dp)+alo*ahi))
lword=iswap

end do
CONTAINS

FUNCTION modint(x)
REAL(DP), DIMENSION(:), INTENT(IN) :: x
INTEGER(I4B), DIMENSION(size(x)) :: modint
REAL(DP), DIMENSION(size(x)) :: a
REAL(DP), PARAMETER :: big=huge(modint), base=big+big+2.0_dp
a=modulo(x,base)
where (a > big) a=a-base
modint=nint(a,kind=i4b)
END FUNCTION modint
END SUBROUTINE psdes_safe_v

f90
FUNCTION modint(x) This embedded routine takes a double-precisionreal
argument, and returns it as an integer mod232 (correctly wrapping it to
negative to take into account that Fortran 90 has no unsigned integers).

� � �

SUBROUTINE ran3_s(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,ran_hash,mran0,nran0,rans
IMPLICIT NONE
REAL(SP), INTENT(OUT) :: harvest

Random number generation by DES-like hashing of two 32-bit words, using the algorithm
ran hash. Returns as harvest a uniform random deviate between 0.0 and 1.0 (exclusive
of the endpoint values).

INTEGER(K4B) :: temp
if (lenran < 1) call ran_init(1) Initialize.
nran0=ieor(nran0,ishft(nran0,13)) Two Marsaglia shift sequences are

maintained as input to the hash-
ing. The period of the combined
generator is about 1.8× 1019.

nran0=ieor(nran0,ishft(nran0,-17))
nran0=ieor(nran0,ishft(nran0,5))
if (nran0 == 1) nran0=270369_k4b

Chapter B7. Random Numbers 1159

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

rans=nran0
mran0=ieor(mran0,ishft(mran0,5))
mran0=ieor(mran0,ishft(mran0,-13))
mran0=ieor(mran0,ishft(mran0,6))
temp=mran0
call ran_hash(temp,rans) Hash.
harvest=amm*merge(rans,not(rans), rans<0) Make the result positive definite (note

that amm is negative).END SUBROUTINE ran3_s

SUBROUTINE ran3_v(harvest)
USE nrtype
USE ran_state, ONLY: K4B,amm,lenran,ran_init,ran_hash,mran,nran,ranv
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: harvest
INTEGER(K4B), DIMENSION(size(harvest)) :: temp
INTEGER(K4B) :: n
n=size(harvest)
if (lenran < n+1) call ran_init(n+1)
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),13))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),-17))
nran(1:n)=ieor(nran(1:n),ishft(nran(1:n),5))
where (nran(1:n) == 1) nran(1:n)=270369_k4b
ranv(1:n)=nran(1:n)
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),5))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),-13))
mran(1:n)=ieor(mran(1:n),ishft(mran(1:n),6))
temp=mran(1:n)
call ran_hash(temp,ranv(1:n))
harvest=amm*merge(ranv(1:n),not(ranv(1:n)), ranv(1:n)<0)
END SUBROUTINE ran3_v

As given,ran3 uses theran hash function in the moduleran state as its
DES surrogate. That function is sufficiently fast to makeran3 only about a factor of
2 slower than our baseline recommended generatorran1. The slower routinepsdes
and (even slower)psdes safe are plug-compatible withran hash, and could be
substituted for it in this routine.

� � �

FUNCTION irbit1(iseed)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: iseed
INTEGER(I4B) :: irbit1

Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

if (btest(iseed,17) .neqv. btest(iseed,4) .neqv. btest(iseed,1) &
.neqv. btest(iseed,0)) then
iseed=ibset(ishft(iseed,1),0) Leftshift the seed and put a 1 in its bit 1.
irbit1=1

else But if the XOR calculation gave a 0,
iseed=ishft(iseed,1) then put that in bit 1 instead.
irbit1=0

end if
END FUNCTION irbit1

1160 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

FUNCTION irbit2(iseed)
USE nrtype
IMPLICIT NONE
INTEGER(I4B), INTENT(INOUT) :: iseed
INTEGER(I4B) :: irbit2

Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

INTEGER(I4B), PARAMETER :: IB1=1,IB2=2,IB5=16,MASK=IB1+IB2+IB5
if (btest(iseed,17)) then Change all masked bits, shift, and put 1 into bit 1.

iseed=ibset(ishft(ieor(iseed,MASK),1),0)
irbit2=1

else Shift and put 0 into bit 1.
iseed=ibclr(ishft(iseed,1),0)
irbit2=0

end if
END FUNCTION irbit2

� � �

SUBROUTINE sobseq(x,init)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: x
INTEGER(I4B), OPTIONAL, INTENT(IN) :: init
INTEGER(I4B), PARAMETER :: MAXBIT=30,MAXDIM=6

When the optional integer init is present, internally initializes a set of MAXBIT direction
numbers for each of MAXDIM different Sobol’ sequences. Otherwise returns as the vector x
of length N the next values from N of these sequences. (N must not be changed between
initializations.)

REAL(SP), SAVE :: fac
INTEGER(I4B) :: i,im,ipp,j,k,l
INTEGER(I4B), DIMENSION(:,:), ALLOCATABLE:: iu
INTEGER(I4B), SAVE :: in
INTEGER(I4B), DIMENSION(MAXDIM), SAVE :: ip,ix,mdeg
INTEGER(I4B), DIMENSION(MAXDIM*MAXBIT), SAVE :: iv
DATA ip /0,1,1,2,1,4/, mdeg /1,2,3,3,4,4/, ix /6*0/
DATA iv /6*1,3,1,3,3,1,1,5,7,7,3,3,5,15,11,5,15,13,9,156*0/
if (present(init)) then Initialize, don’t return a vector.

ix=0
in=0
if (iv(1) /= 1) RETURN
fac=1.0_sp/2.0_sp**MAXBIT
allocate(iu(MAXDIM,MAXBIT))
iu=reshape(iv,shape(iu)) To allow both 1D and 2D addressing.
do k=1,MAXDIM

do j=1,mdeg(k) Stored values require only normalization.
iu(k,j)=iu(k,j)*2**(MAXBIT-j)

end do
do j=mdeg(k)+1,MAXBIT Use the recurrence to get other values.

ipp=ip(k)
i=iu(k,j-mdeg(k))
i=ieor(i,i/2**mdeg(k))
do l=mdeg(k)-1,1,-1

if (btest(ipp,0)) i=ieor(i,iu(k,j-l))
ipp=ipp/2

end do
iu(k,j)=i

end do
end do
iv=reshape(iu,shape(iv))
deallocate(iu)

Chapter B7. Random Numbers 1161

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

else Calculate the next vector in the sequence.
im=in
do j=1,MAXBIT Find the rightmost zero bit.

if (.not. btest(im,0)) exit
im=im/2

end do
if (j > MAXBIT) call nrerror(’MAXBIT too small in sobseq’)
im=(j-1)*MAXDIM
j=min(size(x),MAXDIM)
ix(1:j)=ieor(ix(1:j),iv(1+im:j+im))
XOR the appropriate direction number into each component of the vector and convert
to a floating number.

x(1:j)=ix(1:j)*fac
in=in+1 Increment the counter.

end if
END SUBROUTINE sobseq

f90
if (present(init)) then ... allocate(iu(...)) ... iu=reshape(...)

Wanting to avoid the deprecatedEQUIVALENCE statement, we must
reshapeiv into a two-dimensional array, then un-reshape it after we

are done. This is done only once, at initialization time, so there is no serious
inefficiency introduced.

� � �

SUBROUTINE vegas(region,func,init,ncall,itmx,nprn,tgral,sd,chi2a)
USE nrtype
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: region
INTEGER(I4B), INTENT(IN) :: init,ncall,itmx,nprn
REAL(SP), INTENT(OUT) :: tgral,sd,chi2a
INTERFACE

FUNCTION func(pt,wgt)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: pt
REAL(SP), INTENT(IN) :: wgt
REAL(SP) :: func
END FUNCTION func

END INTERFACE
REAL(SP), PARAMETER :: ALPH=1.5_sp,TINY=1.0e-30_sp
INTEGER(I4B), PARAMETER :: MXDIM=10,NDMX=50

Performs Monte Carlo integration of a user-supplied d-dimensional function func over a
rectangular volume specified by region, a vector of length 2d consisting of d “lower left”
coordinates of the region followed by d “upper right” coordinates. The integration consists of
itmx iterations, each with approximately ncall calls to the function. After each iteration
the grid is refined; more than 5 or 10 iterations are rarely useful. The input flag init
signals whether this call is a new start, or a subsequent call for additional iterations (see
comments below). The input flag nprn (normally 0) controls the amount of diagnostic
output. Returned answers are tgral (the best estimate of the integral), sd (its standard
deviation), and chi2a (χ2 per degree of freedom, an indicator of whether consistent results
are being obtained). See text for further details.

INTEGER(I4B), SAVE :: i,it,j,k,mds,nd,ndim,ndo,ng,npg Best make everything static,
allowing restarts.INTEGER(I4B), DIMENSION(MXDIM), SAVE :: ia,kg

REAL(SP), SAVE :: calls,dv2g,dxg,f,f2,f2b,fb,rc,ti,tsi,wgt,xjac,xn,xnd,xo,harvest
REAL(SP), DIMENSION(NDMX,MXDIM), SAVE :: d,di,xi
REAL(SP), DIMENSION(MXDIM), SAVE :: dt,dx,x
REAL(SP), DIMENSION(NDMX), SAVE :: r,xin
REAL(DP), SAVE :: schi,si,swgt

1162 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

ndim=size(region)/2
if (init <= 0) then Normal entry. Enter here on a cold start.

mds=1 Change to mds=0 to disable stratified sam-
pling, i.e., use importance sampling only.ndo=1

xi(1,:)=1.0
end if
if (init <= 1) then Enter here to inherit the grid from a previous

call, but not its answers.si=0.0
swgt=0.0
schi=0.0

end if
if (init <= 2) then Enter here to inherit the previous grid and its

answers.nd=NDMX
ng=1
if (mds /= 0) then Set up for stratification.

ng=(ncall/2.0_sp+0.25_sp)**(1.0_sp/ndim)
mds=1
if ((2*ng-NDMX) >= 0) then

mds=-1
npg=ng/NDMX+1
nd=ng/npg
ng=npg*nd

end if
end if
k=ng**ndim
npg=max(ncall/k,2)
calls=real(npg,sp)*real(k,sp)
dxg=1.0_sp/ng
dv2g=(calls*dxg**ndim)**2/npg/npg/(npg-1.0_sp)
xnd=nd
dxg=dxg*xnd
dx(1:ndim)=region(1+ndim:2*ndim)-region(1:ndim)
xjac=1.0_sp/calls*product(dx(1:ndim))
if (nd /= ndo) then Do binning if necessary.

r(1:max(nd,ndo))=1.0
do j=1,ndim

call rebin(ndo/xnd,nd,r,xin,xi(:,j))
end do
ndo=nd

end if
if (nprn >= 0) write(*,200) ndim,calls,it,itmx,nprn,&

ALPH,mds,nd,(j,region(j),j,region(j+ndim),j=1,ndim)
end if
do it=1,itmx Main iteration loop. Can enter here (init ≥

3) to do an additional itmx iterations
with all other parameters unchanged.

ti=0.0
tsi=0.0
kg(:)=1
d(1:nd,:)=0.0
di(1:nd,:)=0.0
iterate: do

fb=0.0
f2b=0.0
do k=1,npg

wgt=xjac
do j=1,ndim

call ran1(harvest)
xn=(kg(j)-harvest)*dxg+1.0_sp
ia(j)=max(min(int(xn),NDMX),1)
if (ia(j) > 1) then

xo=xi(ia(j),j)-xi(ia(j)-1,j)
rc=xi(ia(j)-1,j)+(xn-ia(j))*xo

else
xo=xi(ia(j),j)
rc=(xn-ia(j))*xo

Chapter B7. Random Numbers 1163

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

end if
x(j)=region(j)+rc*dx(j)
wgt=wgt*xo*xnd

end do
f=wgt*func(x(1:ndim),wgt)
f2=f*f
fb=fb+f
f2b=f2b+f2
do j=1,ndim

di(ia(j),j)=di(ia(j),j)+f
if (mds >= 0) d(ia(j),j)=d(ia(j),j)+f2

end do
end do
f2b=sqrt(f2b*npg)
f2b=(f2b-fb)*(f2b+fb)
if (f2b <= 0.0) f2b=TINY
ti=ti+fb
tsi=tsi+f2b
if (mds < 0) then Use stratified sampling.

do j=1,ndim
d(ia(j),j)=d(ia(j),j)+f2b

end do
end if
do k=ndim,1,-1

kg(k)=mod(kg(k),ng)+1
if (kg(k) /= 1) cycle iterate

end do
exit iterate

end do iterate
tsi=tsi*dv2g Compute final results for this iteration.
wgt=1.0_sp/tsi
si=si+real(wgt,dp)*real(ti,dp)
schi=schi+real(wgt,dp)*real(ti,dp)**2
swgt=swgt+real(wgt,dp)
tgral=si/swgt
chi2a=max((schi-si*tgral)/(it-0.99_dp),0.0_dp)
sd=sqrt(1.0_sp/swgt)
tsi=sqrt(tsi)
if (nprn >= 0) then

write(*,201) it,ti,tsi,tgral,sd,chi2a
if (nprn /= 0) then

do j=1,ndim
write(*,202) j,(xi(i,j),di(i,j),&

i=1+nprn/2,nd,nprn)
end do

end if
end if
do j=1,ndim Refine the grid. Consult references to under-

stand the subtlety of this procedure. The
refinement is damped, to avoid rapid,
destabilizing changes, and also compressed
in range by the exponent ALPH.

xo=d(1,j)
xn=d(2,j)
d(1,j)=(xo+xn)/2.0_sp
dt(j)=d(1,j)
do i=2,nd-1

rc=xo+xn
xo=xn
xn=d(i+1,j)
d(i,j)=(rc+xn)/3.0_sp
dt(j)=dt(j)+d(i,j)

end do
d(nd,j)=(xo+xn)/2.0_sp
dt(j)=dt(j)+d(nd,j)

end do
where (d(1:nd,:) < TINY) d(1:nd,:)=TINY
do j=1,ndim

1164 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

r(1:nd)=((1.0_sp-d(1:nd,j)/dt(j))/(log(dt(j))-log(d(1:nd,j))))**ALPH
rc=sum(r(1:nd))
call rebin(rc/xnd,nd,r,xin,xi(:,j))

end do
end do

200 format(/’ input parameters for vegas: ndim=’,i3,’ ncall=’,f8.0&
/28x,’ it=’,i5,’ itmx=’,i5&
/28x,’ nprn=’,i3,’ alph=’,f5.2/28x,’ mds=’,i3,’ nd=’,i4&
/(30x,’xl(’,i2,’)= ’,g11.4,’ xu(’,i2,’)= ’,g11.4))

201 format(/’ iteration no.’,I3,’: ’,’integral =’,g14.7,’ +/- ’,g9.2,&
/’ all iterations: integral =’,g14.7,’ +/- ’,g9.2,&
’ chi**2/it’’n =’,g9.2)

202 format(/’ data for axis ’,I2/’ X delta i ’,&
’ x delta i ’,’ x delta i ’,&
/(1x,f7.5,1x,g11.4,5x,f7.5,1x,g11.4,5x,f7.5,1x,g11.4))

CONTAINS

SUBROUTINE rebin(rc,nd,r,xin,xi)
IMPLICIT NONE
REAL(SP), INTENT(IN) :: rc
INTEGER(I4B), INTENT(IN) :: nd
REAL(SP), DIMENSION(:), INTENT(IN) :: r
REAL(SP), DIMENSION(:), INTENT(OUT) :: xin
REAL(SP), DIMENSION(:), INTENT(INOUT) :: xi

Utility routine used by vegas, to rebin a vector of densities xi into new bins defined by
a vector r.

INTEGER(I4B) :: i,k
REAL(SP) :: dr,xn,xo
k=0
xo=0.0
dr=0.0
do i=1,nd-1

do
if (rc <= dr) exit
k=k+1
dr=dr+r(k)

end do
if (k > 1) xo=xi(k-1)
xn=xi(k)
dr=dr-rc
xin(i)=xn-(xn-xo)*dr/r(k)

end do
xi(1:nd-1)=xin(1:nd-1)
xi(nd)=1.0
END SUBROUTINE rebin
END SUBROUTINE vegas

� � �

RECURSIVE SUBROUTINE miser(func,regn,ndim,npts,dith,ave,var)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP) :: func
REAL(SP), DIMENSION(:), INTENT(IN) :: x
END FUNCTION func

END INTERFACE
REAL(SP), DIMENSION(:), INTENT(IN) :: regn
INTEGER(I4B), INTENT(IN) :: ndim,npts

Chapter B7. Random Numbers 1165

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

REAL(SP), INTENT(IN) :: dith
REAL(SP), INTENT(OUT) :: ave,var
REAL(SP), PARAMETER :: PFAC=0.1_sp,TINY=1.0e-30_sp,BIG=1.0e30_sp
INTEGER(I4B), PARAMETER :: MNPT=15,MNBS=60

Monte Carlo samples a user-supplied ndim-dimensional function func in a rectangular
volume specified by region, a 2×ndim vector consisting of ndim “lower-left” coordinates
of the region followed by ndim “upper-right” coordinates. The function is sampled a total
of npts times, at locations determined by the method of recursive stratified sampling. The
mean value of the function in the region is returned as ave; an estimate of the statistical
uncertainty of ave (square of standard deviation) is returned as var. The input parameter
dith should normally be set to zero, but can be set to (e.g.) 0.1 if func’s active region
falls on the boundary of a power-of-2 subdivision of region.
Parameters: PFAC is the fraction of remaining function evaluations used at each stage to
explore the variance of func. At least MNPT function evaluations are performed in any
terminal subregion; a subregion is further bisected only if at least MNBS function evaluations
are available.

REAL(SP), DIMENSION(:), ALLOCATABLE :: regn_temp
INTEGER(I4B) :: j,jb,n,ndum,npre,nptl,nptr
INTEGER(I4B), SAVE :: iran=0
REAL(SP) :: avel,varl,fracl,fval,rgl,rgm,rgr,&

s,sigl,siglb,sigr,sigrb,sm,sm2,sumb,sumr
REAL(SP), DIMENSION(:), ALLOCATABLE :: fmaxl,fmaxr,fminl,fminr,pt,rmid
ndum=assert_eq(size(regn),2*ndim,’miser’)
allocate(pt(ndim))
if (npts < MNBS) then Too few points to bisect; do straight Monte

Carlo.sm=0.0
sm2=0.0
do n=1,npts

call ranpt(pt,regn)
fval=func(pt)
sm=sm+fval
sm2=sm2+fval**2

end do
ave=sm/npts
var=max(TINY,(sm2-sm**2/npts)/npts**2)

else Do the preliminary (uniform) sampling.
npre=max(int(npts*PFAC),MNPT)
allocate(rmid(ndim),fmaxl(ndim),fmaxr(ndim),fminl(ndim),fminr(ndim))
fminl(:)=BIG Initialize the left and right bounds for each

dimension.fminr(:)=BIG
fmaxl(:)=-BIG
fmaxr(:)=-BIG
do j=1,ndim

iran=mod(iran*2661+36979,175000)
s=sign(dith,real(iran-87500,sp))
rmid(j)=(0.5_sp+s)*regn(j)+(0.5_sp-s)*regn(ndim+j)

end do
do n=1,npre Loop over the points in the sample.

call ranpt(pt,regn)
fval=func(pt)
where (pt <= rmid) Find the left and right bounds for each di-

mension.fminl=min(fminl,fval)
fmaxl=max(fmaxl,fval)

elsewhere
fminr=min(fminr,fval)
fmaxr=max(fmaxr,fval)

end where
end do
sumb=BIG Choose which dimension jb to bisect.
jb=0
siglb=1.0
sigrb=1.0
do j=1,ndim

if (fmaxl(j) > fminl(j) .and. fmaxr(j) > fminr(j)) then

1166 Chapter B7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

sigl=max(TINY,(fmaxl(j)-fminl(j))**(2.0_sp/3.0_sp))
sigr=max(TINY,(fmaxr(j)-fminr(j))**(2.0_sp/3.0_sp))
sumr=sigl+sigr Equation (7.8.24); see text.
if (sumr <= sumb) then

sumb=sumr
jb=j
siglb=sigl
sigrb=sigr

end if
end if

end do
deallocate(fminr,fminl,fmaxr,fmaxl)
if (jb == 0) jb=1+(ndim*iran)/175000 MNPT may be too small.
rgl=regn(jb) Apportion the remaining points between left

and right.rgm=rmid(jb)
rgr=regn(ndim+jb)
fracl=abs((rgm-rgl)/(rgr-rgl))
nptl=(MNPT+(npts-npre-2*MNPT)*fracl*siglb/ & Equation (7.8.23).

(fracl*siglb+(1.0_sp-fracl)*sigrb))
nptr=npts-npre-nptl
allocate(regn_temp(2*ndim))
regn_temp(:)=regn(:)
regn_temp(ndim+jb)=rmid(jb) Set region to left.
call miser(func,regn_temp,ndim,nptl,dith,avel,varl)
Dispatch recursive call; will return back here eventually.

regn_temp(jb)=rmid(jb)
regn_temp(ndim+jb)=regn(ndim+jb) Set region to right.
call miser(func,regn_temp,ndim,nptr,dith,ave,var)
Dispatch recursive call; will return back here eventually.

deallocate(regn_temp)
ave=fracl*avel+(1-fracl)*ave Combine left and right regions by equation

(7.8.11) (1st line).var=fracl*fracl*varl+(1-fracl)*(1-fracl)*var
deallocate(rmid)

end if
deallocate(pt)
CONTAINS

SUBROUTINE ranpt(pt,region)
USE nr, ONLY : ran1
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: pt
REAL(SP), DIMENSION(:), INTENT(IN) :: region

Returns a uniformly random point pt in a rectangular region of dimension d. Used by
miser; calls ran1 for uniform deviates.

INTEGER(I4B) :: n
call ran1(pt)
n=size(pt)
pt(1:n)=region(1:n)+(region(n+1:2*n)-region(1:n))*pt(1:n)
END SUBROUTINE ranpt
END SUBROUTINE miser

f90
The Fortran 90 version of this routine is much more straightforward than
the Fortran 77 version, because Fortran 90 allows recursion. (In fact,
this routine is modeled on theC version ofmiser, which was recursive

from the start.)

CITED REFERENCES AND FURTHER READING:

Marsaglia, G., and Zaman, A. 1994, Computers in Physics, vol. 8, pp. 117–121. [1]

Marsaglia, G. 1985, Linear Algebra and Its Applications, vol. 67, pp. 147-156. [2]

Harbison, S.P., and Steele, G.L. 1991, C: A Reference Manual, Third Edition, §5.1.1. [3]

